Friday 17th November 2017

Resource Clips


Posts tagged ‘LiCo Energy Metals Inc (LIC)’

Cobalt: A precarious supply chain

January 14th, 2017

by Jeff Desjardins | posted with permission of Visual Capitalist

Cobalt: A precarious supply chain

 

How does your mobile phone last for 12 hours on just one charge? It’s the power of cobalt, along with several other energy metals, that keeps your lithium-ion battery running.

The only problem? Getting the metal from the source to your electronics is not an easy feat, and this makes for an extremely precarious supply chain for manufacturers.

This infographic comes to us from LiCo Energy Metals TSXV:LIC and it focuses on where this important ingredient of green technology originates from, and the supply risks associated with its main sources.

What is cobalt?

Cobalt is a transition metal found between iron and nickel on the periodic table. It has a high melting point (1493° C) and retains its strength to a high temperature.

Similar to iron or nickel, cobalt is ferromagnetic. It can retain its magnetic properties to 1100° C, a higher temperature than any other material. Ferromagnetism is the strongest type of magnetism: it’s the only one that typically creates forces strong enough to be felt and is responsible for the magnets encountered in everyday life.

These unique properties make the metal perfect for two specialized high-tech purposes: superalloys and battery cathodes.

Superalloys

High-performance alloys drive 18% of cobalt demand. The metal’s ability to withstand intense temperatures and conditions makes it perfect for use in:

  • Turbine blades

  • Jet engines

  • Gas turbines

  • Prosthetics

  • Permanent magnets

Lithium-ion batteries

Batteries drive 49% of demand—and most of this comes from cobalt’s use in lithium-ion battery cathodes:

Type of lithium-ion cathode Cobalt in cathode Spec. energy (Wh/kg)
LFP 0% 120
LMO 0% 140
NMC 15% 200
LCO 55% 200
NCA 10% 245

The three most powerful cathode formulations for li-ion batteries all need cobalt. As a result, the metal is indispensable in many of today’s battery-powered devices:

  • Mobile phones (LCO)

  • Tesla Model S (NCA)

  • Tesla Powerwall (NMC)

  • Chevy Volt (NMC/LMO)

The Tesla Powerwall 2 uses approximately seven kilograms and a Tesla Model S (90 kWh) uses approximately 22.5 kilos of the energy metal.

The cobalt supply chain

Cobalt production has gone almost straight up to meet demand, more than doubling since the early 2000s.

But while the metal is desired, getting it is the hard part.

1. No native cobalt has ever been found.

There are four widely distributed ores that exist but almost no cobalt is mined from them as a primary source.

2. Most cobalt production is mined as a byproduct.

Mine source % cobalt production
Nickel (byproduct) 60%
Copper (byproduct) 38%
Cobalt (primary) 2%

This means it is hard to expand production when more is needed.

3. Most production occurs in the Democratic Republic of Congo, a country with elevated supply risks.

Country Tonnes %
Total 122,701 100.0%
United States 524 0.4%
China 1,417 1.2%
DRC 67,975 55.4%
Rest of World 52,785 43.0%

(Source: CRU, estimated production for 2017, tonnes)

The future of cobalt supply

Companies like Tesla and Panasonic need reliable sources of the metal and right now there aren’t many failsafes.

The United States hasn’t mined cobalt in significant volumes since 1971 and the USGS reports that the U.S. only has 301 tonnes of the metal stored in stockpiles.

The reality is that the DRC produces about half of all cobalt and it also holds approximately 47% of all global reserves.

Why is this a concern for end-users?

1. The DRC is one of the poorest, most corrupt and most coercive countries on the planet.

It ranks:

  • 151st out of 159 countries in the Human Freedom Index

  • 176th out of 188 countries on the Human Development Index

  • 178th out of 184 countries in terms of GDP per capita ($455)

  • 148th out of 169 countries in the Corruption Perceptions Index

2. The DRC has had more deaths from war since WWII than any other country on the planet.
Recent wars in the DRC:

  • First Congo War (1996-1997)—An invasion by Rwanda that overthrew the Mobutu regime.

  • Second Congo War (1998-2003)—The bloodiest conflict in world history since WWII, with 5.4 million deaths.

3. Human rights in mining

The DRC government estimates that 20% of all cobalt production in the country comes from artisanal miners—independent workers who dig holes and mine ore without sophisticated mines or machinery.

There are at least 100,000 artisanal cobalt miners in the DRC and UNICEF estimates that up to 40,000 children could be in the trade. Children can be as young as seven years old and they can work up to 12 hours with physically demanding work earning $2 per day.

Meanwhile, Amnesty International alleges that Apple, Samsung and Sony fail to do basic checks in making sure the metal in their supply chains did not come from child labour.

Most major companies have vowed that any such practices will not be tolerated in their supply chains.

Other sources

Where will tomorrow’s supply come from and will the role of the DRC eventually diminish? Will Tesla achieve its goal of a North American supply chain for its key metal inputs?

Mining exploration companies are already looking at regions like Ontario, Idaho, British Columbia and the Northwest Territories to find tomorrow’s deposits.

Ontario: Ontario is one of the only places in the world where cobalt-primary mines have existed. This camp is near the aptly named town of Cobalt, which is located halfway between Sudbury, the world’s nickel capital, and Val-d’Or, one of the most famous gold camps in the world.

Idaho: Idaho is known as the Gem State while also being known for its silver camps in Coeur d’Alene—but it has also been a cobalt producer in the past.

B.C.: The mountains of B.C. are known for their rich gold, silver, copper, zinc and met coal deposits. But cobalt often occurs with copper and some mines in B.C. have produced cobalt in the past.

Northwest Territories: Cobalt can also be found up north, as the NWT becomes a more interesting mineral destination for companies. One hundred and sixty kilometres from Yellowknife, a gold-cobalt-bismuth-copper deposit is being developed.

Posted with permission of Visual Capitalist.