Tuesday 26th March 2019

Resource Clips


Posts tagged ‘gallium’

Periodic table: New version warns of elements that are endangered

January 25th, 2019

by David Cole-Hamilton, Emeritus Professor of Chemistry, University of St Andrews | posted with permission of The Conversation | January 25, 2019

Periodic table New version warns of elements that are endangered

Period pains. (Image: European Chemical Society)

 

It is amazing to think that everything around us is made up from just 90 building blocks—the naturally occurring chemical elements. Dmitri Mendeleev put the 63 known during his time into order and published his first version of what we now recognize as the periodic table in 1869. In that year, the American Civil War was just over, Germany was about to be unified, Tolstoy published War and Peace and the Suez Canal was opened.

There are now 118 known elements but only 90 that occur in nature. The rest are mostly super-heavy substances that have been created in laboratories in recent decades through nuclear reactions and rapidly decay into one or more of the natural elements.

Where each of these natural elements sits in the periodic table allows us to know immediately a great deal about how it will behave. To commemorate the 150th anniversary of this amazing resource, UNESCO has proclaimed 2019 as the International Year of the Periodic Table.

Periodic table New version warns of elements that are endangered

Dmitri Mendeleev.
(Artwork: Marusya Chaika)

As part of the celebrations, the European Chemical Society has published a completely new version of the periodic table. (See main image.) It is designed to give an eye-catching message about sustainable development. Based on an original idea in the 1970s from the American chemist William Sheehan, the table has been completely redrawn so that the area occupied by each element represents its abundance on a log scale.

Red for danger

Each area of the new table has been colour-coded to indicate its vulnerability. In most cases, elements are not lost but, as we use them, they become dissipated and much less easy to recover. Red indicates that dissipation will make the elements much less readily available in 100 years or less—that’s helium (He), silver (Ag), tellurium (Te), gallium (Ga), germanium (Ge), strontium (Sr), yttrium (Y), zinc (Zn), indium (In), arsenic (As), hafnium (Hf) and tantalum (Ta).

To give just a couple of examples, helium is used to cool the magnets in MRI scanners and to dilute oxygen for deep-sea diving. Vital rods in nuclear reactors use hafnium. Strontium salts are added to fireworks and flares to produce vivid red colours. Yttrium is a component of camera lenses to make them shock- and heat-resistant. It is also used in lasers and alloys. Gallium, meanwhile, is used to make very high-quality mirrors, light-emitting diodes and solar cells.

Meanwhile, the orange and yellow areas on the new periodic table anticipate problems caused by increased use of these elements. Green means that plenty is available—including the likes of oxygen (O), hydrogen (H), aluminium (Al) and calcium (Ca).

Four elements—tin (Sn), tantalum (Ta), tungsten (W) and gold (Au)—are coloured in black because they often come from conflict minerals; that is, from mines where wars are fought over their ownership. They can all be more ethically sourced, so it’s intended as a reminder that manufacturers must carefully trace their origin to be sure that people did not die in order to provide the minerals in question.

Smartphone shortages

Out of the 90 elements, 31 carry a smartphone symbol reflecting the fact that they are all contained in these devices. This includes all four of the elements from conflict minerals and another six with projected useful lifetimes of less than 100 years.

Let us consider indium (In), for instance, which is coloured red on the table. Every touch screen contains a transparent conducting layer of indium tin oxide. There is quite a lot of indium, but it is already highly dispersed. It is a byproduct of zinc manufacture, but there is only enough from that source for about 20 years. Then the price will start to rise quickly unless we do something to preserve current stocks.

The three main possibilities are: replace, recycle or use less. Huge efforts are being made to find alternative materials based on Earth-abundant elements. Reclaiming indium from used screens is possible and being attempted. But when we look at the periodic table and the very precious nature of so many of the elements, can we possibly justify changing our phone every two or so years?

At present over one million phones are traded every month in the UK alone, as well as 10 million in Europe and 12 million in the U.S.

At present over one million phones are traded every month in the UK alone, as well as 10 million in Europe and 12 million in the U.S. When we trade in our smartphones, many of them go to the developing world initially for reuse. Most end up in landfill sites or undergo attempts to extract a few of the elements under appalling conditions. The other elements remain in acidic brews. Along with the very many that lie around in drawers, this is how the elements in mobile phones become dissipated.

The number of phones we trade in could be greatly reduced and lower the demand on limited resources such as indium. In this context, the recent Apple profit warning, partly due to customers replacing their iPhones slightly less frequently, was at least a sign of improvement.

But as the new version of the periodic table underlines, we must do all we can to conserve and recycle the 90 precious building blocks that make up our wonderfully diverse world. If we don’t start taking these problems more seriously, many of the objects and technologies that we now take for granted may become relics of a more abundant age a few generations from now—or available only to richer people.

David Cole-Hamilton is affiliated with the UK Liberal Democratic Party. He is vice-president of the European Chemical Society (EuChemS). He is past-president of the Royal Society of Chemistry Dalton Division covering Inorganic Chemistry. He is a member of the Royal Society of Edinburgh (RSE) Education Committee, RSE Learned Societies Group on STEM Education, RSE European Strategy Group and chairs the sub-group on Research, Innovation and Tertiary Education. He is a trustee of the Wilkinson Charitable Foundation.

Posted with permission of The Conversation.

More from The Conversation:

From Visual Capitalist:

The Conversation

Can’t live without them

March 23rd, 2018

The U.S. Critical Materials Institute develops new technologies for crucial commodities

by Greg Klein

A rare earths supply chain outside China? It exists in the United States and Alex King has proof on his desk in the form of neodymium-iron-boron magnets, an all-American achievement from mine to finished product. But the Critical Materials Institute director says it’s up to manufacturers to take this pilot project to an industry-wide scale. Meanwhile the CMI looks back on its first five years of successful research while preparing future projects to help supply the stuff of modern life.

The U.S. Critical Materials Institute develops new technologies and strategies for crucial commodities

Alex King: “There’s a lot of steps in rebuilding that supply chain.
Our role as researchers is to demonstrate it can be done.
We’ve done that.” (Photo: Colorado School of Mines)

The CMI’s genesis came in the wake of crisis. China’s 2010 ban on rare earths exports to Japan abruptly destroyed non-Chinese supply chains. As other countries began developing their own deposits, China changed tactics to flood the market with relatively cheap output.

Since then the country has held the rest of the world dependent, producing upwards of 90% of global production for these metals considered essential to energy, defence and the overall economy.

That scenario prompted U.S. Congress to create the CMI in 2013, as one of four Department of Energy innovation hubs. Involving four national laboratories, seven universities, about a dozen corporations and roughly 350 researchers, the interdisciplinary group gets US$25 million a year and “a considerable amount of freedom” to pursue its mandate, King says.

The CMI channels all that into four areas. One is to develop technologies that help make new mines viable. The second, “in direct conflict with the first,” is to find alternative materials. Efficient use of commodities comprises the third focus, through improvements in manufacturing, recycling and re-use.

“Those three areas are supported by a fourth, which is a kind of cross-cutting research focus extending across a wide range of areas including quantum physics, chemistry, environmental impact studies and, last but certainly not least, economics—what’s the economic impact of the work we do, what’s its potential, where are the economically most impactful areas for our researchers to address,” King relates.

With 30 to 35 individual projects underway at any time, CMI successes include the Nd-Fe-B batteries. They began with ore from Mountain Pass, the California mine whose 2015 shutdown set back Western rare earths aspirations.

The U.S. Critical Materials Institute develops new technologies and strategies for crucial commodities

Nevertheless “that ore was separated into individual rare earth oxides in a pilot scale facility in Idaho National Lab,” explains King. “The separated rare earth oxides were reduced to master alloys at a company called Infinium in the Boston area. The master alloys were brought to the Ames Lab here at Iowa State University and fabricated into magnets. So all the skills are here in the U.S. We know how to do it. I have the magnets on my desk as proof.”

But, he asks, “can we do that on an industrial scale? That depends on companies picking up and taking ownership of some of these processes.”

In part, that would require the manufacturers who use the magnets to leave Asia. “Whether it’s an electric motor, a hard disk drive, the speakers in your phone or whatever, all that’s done in Asia,” King points out. “And that means it is most advantageous to make the magnets in Asia.”

America does have existing potential domestic demand, however. The U.S. remains a world leader in manufacturing loudspeakers and is a significant builder of industrial motors. Those two sectors might welcome a reliable rare earths supply chain.

“There’s a lot of steps in rebuilding that supply chain. Our role as researchers is to demonstrate it can be done. We’ve done that.”

Among other accomplishments over its first five years, the CMI found alternatives to both europium and terbium in efficient lighting, developed a number of improvements in the viability of rare earths mining and created much more efficient RE separation.

“We also developed a new use for cerium, which is an over-produced rare earth that is a burden on mining,” King says. “We have an aluminum-cerium alloy that is now in production and has actually entered the commercial marketplace and is being sold. Generating use for cerium should generate additional cash flow for some of the traditional forms of rare earths mining.”

Getting back to magnets, “we also invented a way of making them that is much more efficient, greatly reduces sensitive materials like neodymium and dysprosium, and makes electric devices like motors and generators much more efficient.”

All these materials have multiple uses. It’s not like they don’t have interest in the Pentagon and other places.—Alex King

Future projects will focus less on rare earths but more on lithium. The CMI will also tackle several others from the draft list of 35 critical minerals the U.S. released in February: cobalt, manganese, gallium, indium, tellurium, platinum group metals, vanadium and graphite. “These are the ones where we feel we can make the most impact.”

While the emphasis remains on energy minerals, “all these materials have multiple uses. It’s not like they don’t have interest in the Pentagon and other places.”

But the list is hardly permanent, while the challenges will continue. “We’ve learned a huge amount over the last five years about how the market responds when a material becomes critical,” he recalls. “And that knowledge is incredibly valuable because we anticipate there will be increasing incidences of materials going critical. Technology’s moving so fast and demand is shifting so fast that supply will have a hard time keeping up. That will cause short-term supply shortfalls or even excesses. What we need to do is capture the wisdom that has been won in the rare earths crisis and recovery, and be ready to apply that as other materials go critical in the future.”

Alex King speaks at Argus Specialty Metals Week, held in Henderson, Nevada, from April 16 to 18. For a 15% discount on registration, enter code RARE2018.

Critical attention

December 21st, 2017

The U.S. embarks on a national strategy of greater self-reliance for critical minerals

by Greg Klein

A geopolitical absurdity on par with some aspects of Dr. Strangelove and Catch 22 can’t be reduced simply through an executive order from the U.S. president. But an executive order from the U.S. president doesn’t hurt. On December 20 Donald Trump called for a “federal strategy to ensure secure and reliable supplies of critical minerals.” The move came one day after the U.S. Geological Survey released the first comprehensive update on the subject since 1973, taking a thorough look—nearly 900-pages thorough—at commodities vital to our neighbour’s, and ultimately the West’s, well-being.

U.S. president Trump calls for a national strategy to reduce foreign dependence on critical minerals

The U.S. 5th Security Forces Squadron takes part in a
September exercise at Minot Air Force Base, North Dakota.
(Photo: Senior Airman J.T. Armstrong/U.S. Air Force)

The study, Critical Mineral Resources of the United States, details 23 commodities deemed crucial due to their possibility of supply disruption with serious consequences. Many of them come primarily from China. Others originate in unstable countries or countries with a dangerous near-monopoly. For several minerals, the U.S. imports its entire supply.

They’re necessary for medicine, clean energy, transportation and electronics but maybe most worrisome, for national security. That last point prompted comments from U.S. Secretary of the Interior Ryan Zinke, whose jurisdiction includes the USGS. He formerly spent 23 years as a U.S. Navy SEAL officer.

“I commend the team of scientists at USGS for the extensive work put into the report, but the findings are shocking,” he stated. “The fact that previous administrations allowed the United States to become reliant on foreign nations, including our competitors and adversaries, for minerals that are so strategically important to our security and economy is deeply troubling. As both a former military commander and geologist, I know the very real national security risk of relying on foreign nations for what the military needs to keep our soldiers and our homeland safe.”

Trump acknowledged a number of domestic roadblocks to production “despite the presence of significant deposits of some of these minerals across the United States.” Among the challenges, he lists “a lack of comprehensive, machine-readable data concerning topographical, geological and geophysical surveys; permitting delays; and the potential for protracted litigation regarding permits that are issued.”

[Trump’s order also calls for] options for accessing and developing critical minerals through investment and trade with our allies and partners.

Trump ordered a national strategy to be outlined within six months. Topics will include recycling and reprocessing critical minerals, finding alternatives, making improved geoscientific data available to the private sector, providing greater land access to potential resources, streamlining reviews and, not to leave out America’s friends, “options for accessing and developing critical minerals through investment and trade with our allies and partners.”

Apart from economic benefits, such measures would “enhance the technological superiority and readiness of our armed forces, which are among the nation’s most significant consumers of critical minerals.”

In fact the USGS report finds several significant uses for most of the periodic table’s 92 naturally occurring elements. A single computer chip requires well over half of the table. Industrialization, technological progress and rising standards of living have helped bring about an all-time high in minerals demand that’s expected to keep increasing, according to the study.

“For instance, in the 1970s rare earth elements had few uses outside of some specialty fields, and were produced mostly in the United States. Today, rare earth elements are integral to nearly all high-end electronics and are produced almost entirely in China.”

The USGS tracks 88 minerals regularly but also works with the country’s Defense Logistics Agency on a watch list of about 160 minerals crucial to national security. This week’s USGS study deems the critical 23 as follows:

  • antimony
  • barite
  • beryllium
  • cobalt
  • fluorite or fluorspar
  • gallium
  • germanium
  • graphite
  • hafnium
  • indium
  • lithium
  • manganese
  • niobium
  • platinum group elements
  • rare earth elements
  • rhenium
  • selenium
  • tantalum
  • tellurium
  • tin
  • titanium
  • vanadium
  • zirconium

A January 2017 USGS report listed 20 minerals for which the U.S. imports 100% of its supply. Several of the above critical minerals were included: fluorspar, gallium, graphite, indium, manganese, niobium, rare earths, tantalum and vanadium.

This comprehensive work follows related USGS reports released in April, including a breakdown of smartphone ingredients to illustrate the range of countries and often precarious supply chains that supply those materials. That report quoted Larry Meinert of the USGS saying, “With minerals being sourced from all over the world, the possibility of supply disruption is more critical than ever.”

As both a former military commander and geologist, I know the very real national security risk of relying on foreign nations for what the military needs to keep our soldiers and our homeland safe.—Ryan Zinke,
U.S. Secretary of the Interior

David S. Abraham has been a prominent advocate of a rare minerals strategy for Western countries. But in an e-mail to the Washington Post, the author of The Elements of Power: Gadgets, Guns, and the Struggle for a Sustainable Future in the Rare Metal Age warned that Trump’s action could trigger a partisan battle. He told the Post that Republicans tend to use the issue to loosen mining restrictions while Democrats focus on “building up human capacity to develop supply chains rather than the resources themselves.”

Excessive and redundant permitting procedures came under criticism in a Hill op-ed published a few days earlier. Jeff Green, a Washington D.C.-based defence lobbyist and advocate of increased American self-reliance for critical commodities, argued that streamlining would comprise “a positive first step toward strengthening our economy and our military for years to come.”

In a bill presented to U.S. Congress last March, Rep. Duncan Hunter proposed incentives for developing domestic resources and supply chains for critical minerals. His METALS Act (Materials Essential to American Leadership and Security) has been in committee since.

Speaking to ResourceClips.com at the time, Abraham doubted the success of Hunter’s bill, while Green spoke of “a totally different dynamic” in the current administration, showing willingness to “invest in America to protect our national security and grow our manufacturing base.”

Update: Read about Jeff Green’s response to the U.S. national strategy.

“Shocking” USGS report details 23 minerals critical to America’s economy and security

December 19th, 2017

This story has been expanded and moved here.

EU names six new critical materials, warns of industry challenges

May 26th, 2014

by Greg Klein | May 26, 2014

Six new critical raw materials bring the European Commission’s list up to 20, posing a “major challenge for EU industry,” the EC announced May 26. An update to the original 2011 collection, the set now includes borates, chromium, coking coal, magnesite, phosphate rock and silicon metal. No longer included is tantalum, now considered to have a lower supply risk. The division of rare earths into two categories, light and heavy, brings the total to 20 materials:

Raw materials are everywhere—just consider your smartphone. It might contain up to 50 different metals, all of which help to give it its light weight and user-friendly small size. Key economic sectors in Europe—such as automotive, aerospace and renewable energy—are highly dependent on raw materials. These raw materials represent the lifeblood of today’s industry and are fundamental for the development of environmental technologies and the digital agenda.—EC Enterprise and Industry

  • antimony
  • beryllium
  • borates
  • chromium
  • cobalt
  • coking coal
  • fluorspar
  • gallium
  • germanium
  • graphite (natural)
  • indium
  • magnesite
  • magnesium
  • niobium
  • phosphate rock
  • platinum group metals
  • rare earths (heavy)
  • rare earths (light)
  • silicon metal
  • tungsten

With 54 candidates considered, materials were evaluated largely on two criteria, economic importance and supply risk. Economic importance was determined by “assessing the proportion of each material associated with industrial megasectors” and their importance to the EU’s GDP.

Supply risk was assessed through the World Governance Indicator, which considers factors “such as voice and accountability, political stability and absence of violence, government effectiveness, regulatory quality, rule of law or control of corruption.”

Not surprisingly, the report names China as the biggest global supplier of the 20. “Several other countries have dominant supplies of specific raw materials, such as Brazil (niobium). Supply of other materials, for example platinum group metals and borates, is more diverse but is still concentrated. The risks associated with this concentration of production are in many cases compounded by low substitutability and low recycling rates.” About 90% of the critical materials’ primary supply comes from outside the EU.

The commission hopes its list will encourage European production of the materials. The list will also be considered when negotiating trade agreements and promoting R&D, as well as by companies evaluating their own supplies.

As for the future, the EC sees growing demand for all 20 critical raw materials, “with niobium, gallium and heavy rare earth elements forecast to have the strongest rates of demand growth, exceeding 8% per year for the rest of the decade.”

The commission adds that “all raw materials, even when not critical, are important for the European economy” and therefore should not be neglected.

The EC intends to update its list at least every three years.

Download the EU report on critical raw materials.